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Abstract
Some general properties of compatible Poisson brackets of hydrodynamic type
are discussed, in particular: (a) an invariant differential–geometric criterion
of the compatibility based on the Nijenhuis tensor which is slightly different
from those existing in the literature; (b) the Lax pair with a spectral parameter
governing compatible Poisson brackets in the diagonalizable case; (c) the
connection of this problem with the class of surfaces in Euclidean space which
possess non-trivial deformations preserving the Weingarten operator.

PACS numbers: 0220, 0230, 0240, 0540, 4735

1. Introduction

In 1983 Dubrovin and Novikov [3] introduced the Poisson brackets of hydrodynamic type

{F,G} =
∫

δF

δui
Aij δG

δuj
dx (1)

defined by the Hamiltonian operators Aij of the form

Aij = gij
d

dx
+ b

ij

k u
k
x b

ij

k = −gis�j

sk. (2)

They proved that in the non-degenerate case (det gij �= 0) the bracket (1) and (2) is skew-
symmetric and satisfies the Jacobi identities if and only if the metric gij (with upper indices)
is flat, and �j

sk are the Christoffel symbols of the corresponding Levi-Civita connection.
Let us assume that there is a second Poisson bracket of hydrodynamic type defined on the

same phase space by the Hamiltonian operator,

Ãij = g̃ij
d

dx
+ b̃

ij

k u
k
x b̃

ij

k = −g̃is �̃j

sk (3)

corresponding to a flat metric g̃ij . Two Poisson brackets (Hamiltonian operators) are called
compatible if their linear combinations Ãij + λAij are Hamiltonian as well. This requirement
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implies, in particular, that the metric g̃ij + λgij must be flat for any λ (plus certain additional
restrictions). The necessary and sufficient conditions of the compatibility were first formulated
by Dubrovin [6, 7] (see Mokhov [19, 20] for further discussions). In section 2 we reformulate
these conditions in terms of the operator rij = g̃isgsj (theorem 1) which, in particular, implies
the vanishing of the Nijenhuis tensor of the operator rij :

Ni
jk = rsj ∂sr

i
k − rsk ∂sr

i
j − ris (∂j r

s
k − ∂kr

s
j ) = 0

(see [8, 20]).
Examples of compatible Hamiltonian pairs naturally arise in the theory of Hamiltonian

systems of hydrodynamic type (see, e.g., [1, 15, 16, 22, 23, 26]). Dubrovin developed a deep
theory for a particular class of compatible Poisson brackets arising within the framework of
the associativity equations [6, 7]. Compatible Poisson brackets of hydrodynamic type can also
be obtained as a result of Whitham averaging (dispersionless limit) from the local compatible
Poisson brackets of integrable systems [3–5, 11, 25, 27, 29]. Some further examples and partial
classification results can be found in [8, 11, 14, 19, 22, 24].

If the spectrum of rij is simple, the vanishing of the Nijenhuis tensor implies the existence
of a coordinate system where both metrics gij and g̃ij become diagonal. In these diagonal
coordinates the compatibility conditions take the form of an integrable reduction of the Lamé
equations. We present the corresponding Lax pairs in section 3. Another approach to the
integrability of this system has been proposed recently by Mokhov [21] by an appropriate
modification of Zakharov’s scheme [30].

The main observation of this paper is the relationship between compatible Poisson brackets
of hydrodynamic type and hypersurfaces Mn−1 ∈ En which possess non-trivial deformations
preserving the Weingarten operator. For surfaces M2 ∈ E3 these deformations have been
investigated by Finikov and Gambier as long ago as 1933 [12, 13] (see also [2]). In section 4
we demonstrate that the n-orthogonal coordinate system in En corresponding to the flat metric
g̃ij + λgij (rewritten in the diagonal coordinates) deforms with respect to λ in such a way that
the Weingarten operators of the coordinate hypersurfaces are preserved up to constant scaling
factors. In section 5 we discuss surfaces M2 ∈ E3 which possess non-trivial one-parameter
deformations preserving the Weingarten operator and explicitly introduce a spectral parameter
in the corresponding Gauss–Codazzi equations.

2. Differential–geometric criterion of compatibility

To formulate the necessary and sufficient conditions of compatibility we introduce the operator
rij = g̃isgsj , which is automatically symmetric

risg
sj = rjs g

si (4)

so that g̃ij = risg
sj = r

j
s g

si = rij . In what follows we use the first metric gij for raising and
lowering the indices.

Theorem 1. Hamiltonian operators (2) and (3) are compatible if and only if the following
conditions are satisfied

(a) The Nijenhuis tensor of rij vanishes:

Ni
jk = rsj ∂sr

i
k − rsk ∂sr

i
j − ris (∂j r

s
k − ∂kr

s
j ) = 0. (5)
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(b) The metric coefficients g̃ij = rij satisfy the equations

∇ i∇j rkl + ∇k∇ lr ij = ∇ i∇krjl + ∇j∇ lr ik. (6)

Here ∇ i = gis∇s is the covariant differentiation corresponding to the metric gij . The
vanishing of the Nijenhuis tensor implies the following expression for the coefficients b̃ijk
in terms of rij :

2b̃ijk = ∇ i r
j

k − ∇j rik + ∇kr
ij + 2bsjk r

i
s . (7)

In a somewhat different form the necessary and sufficient conditions of the compatibility
were formulated in [6, 7, 19, 20].

Remark. The criterion of the compatibility of the Hamiltonian operators of hydrodynamic
type resembles that of the finite-dimensional Poisson bivectors: two skew-symmetric Poisson
bivectors ωij and ω̃ij are compatible if and only if the Nijenhuis tensor of the corresponding
recursion operator rij = ω̃isωsj vanishes. We emphasize that in our situation the operator rij
does not coincide with the recursion operator.

Proof of theorem 1. Recall that in terms of gij and bijk the conditions for the operator A to be
Hamiltonian take the form

2bkis g
sj = gjs∂sg

ik + gks∂sg
ij − gis∂sg

kj (8)

and

gjs∂sb
ik
n − gis∂sb

jk
n + (bijs − bjis )b

sk
n + biks b

js
n − bjks b

is
n = 0 (9)

respectively (the last condition follows from the identity gilgjsRk
nls = 0 after rewriting it in

terms of bijk ). Note that (8) is equivalent to a pair of simpler conditions

b
ij

k + b
ji

k = ∂kg
ij biks g

sj = bjks g
si .

To write down the compatibility conditions of (2) and (3), we replace gij and bijk by the linear
combinations

gij → λgij + g̃ij b
ij

k → λb
ij

k + b̃
ij

k

substitute them into (8) and (9), collect the terms with λ (terms with λ2 and λ0 vanish since
(2) and (3) are Hamiltonian) and equate them to zero. Thus, equation (8) produces the first
compatibility condition

2b̃kis g
sj + 2bkis g̃

sj = g̃js∂sg
ik + gjs∂s g̃

ik + g̃ks∂sg
ij + gks∂s g̃

ij − g̃is∂sg
kj − gis∂s g̃

kj . (10)

Similarly, equation (9) produces the second compatibility condition

g̃js∂sb
ik
n + gjs∂s b̃

ik
n − g̃is∂sb

jk
n − gis∂s b̃

jk
n + (b̃ijs − b̃j is )b

sk
n + (bijs − bjis )b̃

sk
n + b̃iks b

js
n + biks b̃

js
n

−b̃jks bisn − bjks b̃
is
n = 0. (11)

To simplify further calculations, it is convenient to work in the coordinates where the flat metric
g assumes the constant coefficient form gij = constant, so that bijk ≡ 0. In these coordinates
the compatibility conditions (10) and (11) reduce to

2b̃kis g
sj = gjs∂s g̃

ik + gks∂s g̃
ij − gis∂s g̃

kj (12)
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and

gjs∂s b̃
ik
n − gis∂s b̃

jk
n = 0 (13)

respectively. Rewriting the left-hand side of (12) in the form 2b̃kis g
sj = 2b̃kis g̃

sl(r−1)
j

l and
substituting the expressions for b̃kis g̃

sl from (8), we arrive at

(g̃ls∂s g̃
ik + g̃ks∂s g̃

il − g̃is∂s g̃
kl)(r−1)

j

l = gjs∂s g̃
ik + gks∂s g̃

ij − gis∂s g̃
kj .

Cancelling the underlined terms and substituting g̃ij = risg
sj = r

j
s g

si , we obtain

(rspg
pk∂s(r

l
ng

ni)− rspg
pi∂s(r

l
ng

nk))(r−1)
j

l = gks∂s(r
j
ng

ni)− gis∂s(r
j
ng

nk)

or

(rspg
pkgni∂sr

l
n − rspg

pignk∂sr
l
n)(r

−1)
j

l = gksgni∂sr
j
n − gisgnk∂sr

j
n .

Contraction with rmj results in

gpkgnirsp∂sr
m
n − gpignkrsp∂sr

m
n = gksgnirmj ∂sr

j
n − gisgnkrmj ∂sr

j
n

which is equivalent to

gpkgni(rsp∂sr
m
n − rsn∂sr

m
p − rmj ∂pr

j
n + rmj ∂nr

j
p) = 0

implying the vanishing of the Nijenhuis tensor.
To establish the second identity (9), we will make use of the formula (7) for the coefficients

b̃
ij

k in terms of r , the proof of which is included in the appendix (note that this formula is true in
an arbitrary coordinate system). In the coordinates where gij = constant we have gis∂s = ∇ i ,
2b̃ijk = ∇ i r

j

k − ∇j rik + ∇kr
ij , so that (13) takes the form

∇j (∇ i rkn − ∇krin + ∇nr
ik)− ∇ i (∇j rkn − ∇krjn + ∇nr

jk) = 0.

Cancellation of the underlined terms and contraction with gsn produces (6). This completes
the proof of the theorem. �

Remark. If the spectrum of rij is simple, condition (6) is redundant: it is automatically satisfied
by virtue of (5) and the flatness of both metrics g and g̃ (indeed, in this case equations (16)
and (17) of section 3 already imply the compatibility). This was the motivation for me to drop
condition (6) in the compatibility criterion formulated in [9]. However, in this general form
the criterion proved to be incorrect: recently it was pointed out by Mokhov [20] that in the
case when the spectrum of rij is not simple the vanishing of the Nijenhuis tensor is no longer
sufficient for compatibility.

3. Compatibility conditions in the diagonal form: the Lax pairs

If the spectrum of rij is simple, the vanishing of the Nijenhuis tensor implies the existence
of the coordinates R1, . . . , Rn in which the objects rij , g

ij , g̃ij become diagonal. Moreover,
the ith eigenvalue of rij depends only on the coordinate Ri , so that rij = diag(ηi), gij =
diag(gii), g̃ij = diag(giiηi), where ηi is a function of Ri . This is a generalization of the
analogous observation by Dubrovin [6] in the particular case of compatible Poisson brackets
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originating from the theory of the associativity equations. Introducing the Lamé coefficients
Hi and the rotation coefficients βij by the formulae

Hi = √
gii = 1/

√
gii ∂iHj = βijHi (14)

we can rewrite the zero-curvature conditions for the metric g in the form

∂kβij = βikβkj (15)

∂iβij + ∂jβji +
∑
k �=i,j

βkiβkj = 0. (16)

The zero-curvature condition for the metric g̃ imposes the additional constraint

ηi∂iβij + ηj∂jβji + 1
2η

′
iβij + 1

2η
′
jβji +

∑
k �=i,j

ηkβkiβkj = 0 (17)

resulting from (16) after the substitution of the rotation coefficients β̃ij = βij
√
ηi/ηj of the

metric g̃. As can be readily seen, equations (16) and (17) already imply the compatibility,
so that in the diagonalizable case condition (6) of theorem 1 is indeed superfluous. Solving
equations (16) and (17) for ∂iβij , we can rewrite (15)–(17) in the form

∂kβij = βikβkj

∂iβij = 1

2

η′
i

ηj − ηi
βij +

1

2

η′
j

ηj − ηi
βji +

∑
k �=i,j

ηk − ηj

ηj − ηi
βkiβkj .

(18)

It can be verified by a straightforward calculation that system (18) is compatible for any choice
of the functions ηi(Ri), and its general solution depends on n(n − 1) arbitrary functions of
one variable (indeed, one can arbitrarily prescribe the value of βij on the j th coordinate line).
Under the additional ‘Egorov’ assumption βij = βji , system (18) reduces to that studied by
Dubrovin in [7]. For n � 3 system (18) is essentially nonlinear. Its integrability follows from
the Lax pair

∂jψi = βijψj ∂iψi = − η′
i

2(λ + ηi)
ψi −

∑
k �=i

λ + ηk

λ + ηi
βkiψk (19)

with a spectral parameter λ (another demonstration of the integrability of system (18) has been
proposed recently in [21] by an appropriate modification of Zakharov’s approach [30]).

Remark. In fact, the Lax pair (19) is gauge-equivalent to the equations

(g̃ik + λgik)∂k∂jψ + (b̃ikj + λbikj )∂kψ = 0

for the Casimirs
∫
ψ dx of the Hamiltonian operator Ãij + λAij .

After the gauge transformationψi = ϕi/
√
λ + ηi the Lax pair (19) assumes the manifestly

skew-symmetric form

∂jϕi =
√
λ + ηi

λ + ηj
βijϕj ∂iϕi = −

∑
k �=i

√
λ + ηk

λ + ηi
βkiϕk (20)

which is of the type discussed in [17]. Thus, we can introduce an orthonormal frame 
ϕ1, . . . , 
ϕn
in the Euclidean space En satisfying the equations

∂j 
ϕi =
√
λ + ηi

λ + ηj
βij 
ϕj ∂i 
ϕi = −

∑
k �=i

√
λ + ηk

λ + ηi
βki 
ϕk ( 
ϕi, 
ϕj ) = δij . (21)
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Let us introduce a vector 
r such that

∂i
r = Hi√
λ + ηi


ϕi

(the compatibility of these equations can be readily verified). In view of the formula

(∂i
r, ∂j 
r) = H 2
i

λ + ηi
δij

the radius-vector 
r is descriptive of an n-orthogonal coordinate system in En corresponding
to the flat metric

∑
i

H 2
i

λ + ηi
(dRi)2.

Geometrically, 
ϕi are the unit vectors along the coordinate lines of this n-orthogonal system.
Let us discuss in some more detail the case ηi = constant = ci , in which the system (18)

takes the form

∂kβij = βikβkj

∂iβij =
∑
k �=i,j

ck − cj

cj − ci
βkiβkj .

(22)

One can readily verify that the quantity

Pi =
∑
k �=i

(ck − ci)β
2
ki

is an integral of system (22), namely, ∂jPi = 0 for any i �= j , so that Pi is a function
of Ri . Utilizing the obvious symmetry Ri → si(R

i), βki → βki/s
′
i (R

i) of system
(22), we can reduce Pi to ±1 (if non-zero). Let us consider the simplest non-trivial case
n = 3, P1 = P2 = 1, P3 = −1:

P1 = (c2 − c1)β
2
21 + (c3 − c1)β

2
31 = 1

P2 = (c1 − c2)β
2
12 + (c3 − c2)β

2
32 = 1

P3 = (c1 − c3)β
2
13 + (c2 − c3)β

2
23 = −1.

Assuming c3 > c2 > c1 and introducing the parametrization

β21 = sinp/
√
c2 − c1 β31 = cosp/

√
c3 − c1

β12 = sinh q/
√
c2 − c1 β32 = cosh q/

√
c3 − c2

β13 = sin r/
√
c3 − c1 β23 = cos r/

√
c3 − c2

we readily rewrite (22) in the form

∂1q = µ1 cosp ∂1r = −µ1 sinp

∂2p = −µ2 cosh q ∂2r = µ2 sinh q

∂3p = µ3 cos r ∂3q = µ3 sin r



Compatible Poisson brackets of hydrodynamic type 2383

where

µ1 =
√

c3 − c2

(c2 − c1)(c3 − c1)

µ2 =
√

c3 − c1

(c2 − c1)(c3 − c2)

µ3 =
√

c2 − c1

(c3 − c1)(c3 − c2)
.

After rescaling, this system simplifies to

∂1q = cosp ∂1r = − sinp

∂2p = − cosh q ∂2r = sinh q

∂3p = cos r ∂3q = sin r.

(23)

Expressing p and r in the form p = arccos ∂1q, r = arcsin ∂3q, we can rewrite (23) as a triple
of pairwise commuting Monge–Ampère equations

∂1∂2q = cosh q
√

1 − ∂1q2

∂1∂3q = −
√

1 − ∂1q2
√

1 − ∂3q2

∂2∂3q = sinh q
√

1 − ∂3q2.

Similar triples of Monge–Ampère equations were obtained in [10] in the classification
of quadruples of 3 × 3 hydrodynamic-type systems which are closed under the Laplace
transformations. However, at the moment there is no explanation of this coincidence.

4. Deformations of n-orthogonal coordinate systems inducing rescalings of the
Weingarten operators of the coordinate hypersurfaces

We have demonstrated in section 3 that the radius-vector 
r(R1, . . . , Rn) of the n-orthogonal

coordinate system in En corresponding to the flat diagonal metric
∑

i

H 2
i

λ+ηi
(dRi)2 satisfies the

equations

∂i
r = Hi√
λ + ηi


ϕi

where the infinitesimal displacements of the orthonormal frame 
ϕi are governed by

∂j 
ϕi =
√
λ + ηi

λ + ηj
βij 
ϕj ∂i 
ϕi = −

∑
k �=i

√
λ + ηk

λ + ηi
βki 
ϕk.

Since our formulae depend on the spectral parameter, we may speak of the ‘deformation’
of the n-orthogonal coordinate system with respect to λ. To investigate this deformation in
some more detail, we fix a coordinate hypersurface Mn−1 ⊂ En (say, Rn = constant). Its
radius-vector 
r and the unit normal 
ϕn satisfy the Weingarten equations

∂i 
ϕn = βni

Hi

√
λ + ηn ∂i
r i = 1, . . . , n− 1
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implying that

ki = βni

Hi

√
λ + ηn

are the principal curvatures of Mn−1. Since ηn is a constant on Mn−1, our deformation
preserves the Weingarten operator of Mn−1 up to a constant scaling factor

√
λ + ηn (we point

out that the curvature line parametrizationR1, . . . , Rn−1 is preserved by a construction). Thus,
compatible Poisson brackets of hydrodynamic type give rise to deformations of n-orthogonal
systems inEn which, up to scaling factors, preserve the Weingarten operators of the coordinate
hypersurfaces. If we follow the evolution of a particular coordinate hypersurface Mn−1, this
scaling factor can be eliminated by a homothetic transformation of the ambient space En, so
that we arrive at the non-trivial deformation of a hypersurface which preserves the Weingarten
operator. However, this scaling factor cannot be eliminated for all coordinate hypersurfaces
simultaneously.

5. Surfaces in E3 which possess non-trivial deformations preserving the Weingarten
operator

Interestingly enough, the problem of the classification of surfaces M2 ∈ E3 which possess
non-trivial deformations preserving the Weingarten operator has been formulated by Finikov
and Gambier as long ago as 1933 [12, 13] (see also Cartan [2]). Among other results, they
demonstrated that the only surfaces possessing three-parameter families of such deformations
are the quadrics, conformal transforms of surfaces of revolution and all other surfaces having
the same spherical image of curvature lines (if surfaces have the same spherical image of
curvature lines or, equivalently, related by a Combescure transformation, they can be deformed
simultaneously).

In this section we discuss surfaces which possess one-parameter families of such
deformations. Let M2 ∈ E3 be a surface parametrized by coordinates R1, R2 of curvature
lines. Let

G11(dR
1)2 + G22(dR

2)2 (24)

be its third fundamental form (or metric of the Gaussian image, which is automatically of
constant curvature 1). Let k1, k2 be the radii of principal curvature satisfying the Peterson–
Codazzi equations

∂2k
1

k2 − k1
= ∂2 ln

√
G11

∂1k
2

k1 − k2
= ∂1 ln

√
G22. (25)

Suppose there exists a flat metric

g11(dR
1)2 + g22(dR

2)2 (26)

such that

G11 = g11/η1 G22 = g22/η2 (27)

where η1, η2 are functions of R1, R2, respectively. One can readily verify that under these
assumptions the metric

G̃11(dR
1)2 + G̃22(dR

2)2 = g11

λ + η1
(dR1)2 +

g22

λ + η2
(dR2)2 (28)
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has constant curvature 1 for any λ. Since equations (25) are still true if we replace Gii by
G̃ii , we arrive at a one-parameter family of surfaces M2

λ with the third fundamental forms (28)
(which depend on λ) and the principal curvatures k1, k2 (which are independent of λ). Hence,
the Weingarten operators of surfacesM2

λ coincide. The problem of the classification of surfaces
which possess one-parameter families of deformations preserving the Weingarten operator is
thus reduced to the classification of metrics (28) which have constant Gaussian curvatures 1 for
any λ. Any such metric generates an infinite family of deformable surfaces whose principal
curvatures k1, k2 satisfy (25). In terms of the Lamé coefficients H1 = √

g11, H2 = √
g22

and the rotation coefficients β12 = ∂1H2/H1, β21 = ∂2H1/H2 our problem reduces to the
nonlinear system

∂1H2 = β12H1 ∂2H1 = β21H2

∂1β12 + ∂2β21 = 0

η1∂1β12 + η2∂2β21 + 1
2η

′
1β12 + 1

2η
′
2β21 + H1H2 = 0

(29)

which possesses the Lax pair

∂1ψ =




0 −
√
λ + η2

λ + η1
β21

H1√
λ + η1√

λ + η2

λ + η1
β21 0 0

− H1√
λ + η1

0 0



ψ

∂2ψ =




0

√
λ + η1

λ + η2
β12 0

−
√
λ + η1

λ + η2
β12 0

H2√
λ + η2

0 − H2√
λ + η2

0



ψ.

Geometrically, this Lax pair governs infinitesimal displacements of the orthonormal frame of
the orthogonal coordinate system on the unit sphere S2, corresponding to the metric (28). In
2 × 2 matrices it takes the form

2
√
λ + η1 ∂1ψ =

(
i
√
λ + η2β21 H1

−H1 −i
√
λ + η2β21

)
ψ

2
√
λ + η2 ∂2ψ = i

( −√
λ + η1β12 H2

H2
√
λ + η1β12

)
ψ.

Remark. In [8] we established a one-to-one correspondence between surfaces possessing
non-trivial deformations preserving the Weingarten operator and multi-Hamiltonian systems
of hydrodynamic type. Indeed, let us introduce the Hamiltonian operator

δij gii
d

dx
+ b

ij

k R
k
x
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associated with the flat diagonal metric (26), and the non-local Hamiltonian operator (see [18])

δijGii d

dx
+ b̃

ij

k R
k
x + Ri

x

(
d

dx

)−1

Rj
x

associated with the diagonal metric (24) of constant curvature 1 (these operators are compatible
by virtue of (27)). According to the results of Tsarev [28, 29], equations (25) imply that the
systems of hydrodynamic type

R1
t = k1(R)R1

x R2
t = k2(R)R2

x

are automatically bi-Hamiltonian with respect to both Hamiltonian structures. Characteristic
velocities of these systems are the radii of principal curvature of the corresponding surfaces.

The results of this section generalize in a straightforward way to multidimensional
hypersurfaces Mn−1 ∈ En.

Appendix. Formula for b̃ij
k

To verify formula (7), it suffices to check the identities

b̃
ij

k + b̃
j i

k = ∂kr
ij (A1)

b̃iks r
sj = b̃jks r

si . (A2)

Substituting the expression for the covariant derivative

∇kr
ij = ∂kr

ij − bsik r
j
s − b

sj

k r
i
s

into (7), we readily obtain

2b̃ijk = (∇ i r
j

k − ∇j rik + b
sj

k r
i
s − bsik r

j
s ) + ∂kr

ij

where the expression in brackets is skew-symmetric in i, j . This proves (A1).
To verify (A2), we first rewrite it in the form

(∇ i rks − ∇kris + ∇sr
ik + 2blks r

i
l )r

sj = (∇j rks − ∇krjs + ∇sr
jk + 2blks r

j

l )r
si . (A3)

Since blks r
i
l r

sj = blks glt r
tirsj = −�k

tsr
tirsj , the underlined terms cancel in view of the

symmetry of �. Contracting (A3) with gpjgmkgni , we arrive at

gpj (∇nrms − ∇mrns)r
sj + rsp∇srmn = gni(∇prms − ∇mrps)r

si + rsn∇srmp

which, by virtue of the identity rmsrsj = rsmr
j
s , transforms to

gplr
l
s(∇nr

s
m − ∇mr

s
n) + rsp∇srmn = gnlr

l
s(∇pr

s
m − ∇mr

s
p) + rsn∇srmp.

In view of the identity

rls(∇nr
s
m − ∇mr

s
n) = rsn∇sr

l
m − rsm∇sr

l
n

manifesting the vanishing of the Nijenhuis tensor (we emphasize that in (5) partial derivatives
can be replaced by covariant derivatives with respect to any symmetric affine connection
without changing the Nijenhuis tensor), the last equation can be rewritten as follows:

gpl(r
s
n∇sr

l
m − rsm∇sr

l
n) + rsp∇srmn = gnl(r

s
p∇sr

l
m − rsm∇sr

l
p) + rsn∇srmp

or

rsn∇srpm − rsm∇srpn + rsp∇srmn = rsp∇srnm − rsm∇srnp + rsn∇srmp

which is obviously an identity. This proves formula (7).
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